- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000100002000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Khurana, Varun (3)
-
Cloninger, Alexander (2)
-
Moosmüller, Caroline (2)
-
Chen, Changyou (1)
-
Hamm, Keaton (1)
-
Kannan, Harish (1)
-
Krishnamurthy, Balaji (1)
-
Shah, Rajiv_Ratn (1)
-
Singla, Yaman_Kumar (1)
-
Subramanian, Jayakumar (1)
-
Xu, zhiqiang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 24, 2026
-
Cloninger, Alexander; Hamm, Keaton; Khurana, Varun; Moosmüller, Caroline (, Applied and Computational Harmonic Analysis)Free, publicly-accessible full text available January 1, 2026
-
Khurana, Varun; Kannan, Harish; Cloninger, Alexander; Moosmüller, Caroline (, Sampling Theory, Signal Processing, and Data Analysis)Abstract In this paper we study supervised learning tasks on the space of probability measures. We approach this problem by embedding the space of probability measures into$$L^2$$ spaces using the optimal transport framework. In the embedding spaces, regular machine learning techniques are used to achieve linear separability. This idea has proved successful in applications and when the classes to be separated are generated by shifts and scalings of a fixed measure. This paper extends the class of elementary transformations suitable for the framework to families of shearings, describing conditions under which two classes of sheared distributions can be linearly separated. We furthermore give necessary bounds on the transformations to achieve a pre-specified separation level, and show how multiple embeddings can be used to allow for larger families of transformations. We demonstrate our results on image classification tasks.more » « less
An official website of the United States government
